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1 Linear Transformations between Vector Spaces

So far we have restricted us to linear transformations 7' : R" — R"™. However,
there are many more vector spaces out there. As a generalization of the
definition of a linear transformation we consider the following:

Definition 4.26 (Linear transformation between vector spaces). Let V, W
be two vector spaces. A function T : V' — W is called a linear transformation
between vector spaces if the following linearity axiom holds for all x;,x, € V'

and all A, Ay € R:

T()\lxl ol )\2X2) = /\1T<X1) -+ )\2T<X2).

With this definition in mind bijective, or undoable linear transformations
have a more important meaning. Bijective linear transformations pre-
serve bases! More formally:

Lemma 4.27 (Bijective linear transformations preserve bases). Let T :
V' — W be a bijective linear transformation between vector spaces V' and
W. Let B ={vy,Vvs,...,v;} CV be a finite set of size ¢, and let

T(B) = {T(v1),T(vs),...,T(v)} C W



be the transformed set. Then |T(B)| = |B|. Moreover, B is a basis of V' if
and only if T'(B) is a basis of W. We therefore also have dim (V') = dim(W).

You can see the proof in the lecture notes. The proof repeatedly uses that
this linear transformation is bijective. You should keep in mind that for
bijective linear transformations there is only one input corresponding to an
output and vice versa.

We can now say that the vector spaces W, V' that have a bijective linear trans-
formation 7" : R® — R™ between them share a lot of properties. Knowing
a basis of one of the vector spaces and T" we can find one basis of the other
vector space. In particular their dimensions are the same since |T'(B)| = | B].
We call these vector spaces isomorphic.

Definition 4.28 (Isomorphic vector spaces, isomorphism). Let VW be
two vector spaces. If there is a bijective linear transformation 7" : V — W
(Definition 4.26), then V and W are called isomorphic, and T is called an
1somorphism between V and W.

An interesting property that follows this definition is that all vector spaces
with m dimensions are isomorphic. The intuition is simple: All vector spaces
V' with m dimensions have bases consisting of m vectors. Each element v € V'
of such vector spaces can be written as a linear combination of the m basis
vectors as:

MVi+ -+ A v, =V

As you might remember there is a unique linear combination of linearly inde-
pendent vectors for every v in the span of the linearly independent vectors.
So the coefficient vector A = (Ay,...,\,)" we get here is unique for every
v € V. Hence the linear transformation

T:V - R™
T:vi= A

is a bijective linear transformation between V' and R™ hence an isomor-
phism.!

! This is not the formal proof but it is the idea behind the proof.



2 Fundamental Subspaces

Matrices are the backbones of linear algebra and more, whether it’s mul-
tivariate calculus, or machine learning, we can represent various objects as
matrices. The 4 fundamental subspaces associated with a matrix? will give
us important insights about the matrix at hand. They are: Column Space
C(A), Row Space R(A), Nullspace N(A) and the Left Nullspace LN(A).
Here is an overview from Professor Strang’s book Introduction to Linear
Algebra. You can find him explain this on YouTube, I totally recommend
watching that particular part of his lecture. (The dimensions below should

be n —r and m — r for N(A) and N(A"))

C(A)
dim r

column space
all Ax

row space
all ATy

The big picture

left nullspace
nullspace ATy=0
Ax=0

N (AT)
dimensionm r

N (A)
dimension n r

Gilbert St. (2009), Introduction to Linear Algebra, 4th Edition, Page 187

2.1 Column Space C(A)
The column space of a matrix A € R™*" is defined as follows:

C(A) = {Ax | x € R"} CR™

This means, the column space of a matrix is the set of all linear combinations
of its columns. The column space is also referred as the Image of A (Im(A)).
This makes more sense if you think of A as a linear transformation.

2The left nullspace is not included in the lecture notes anymore so you don’t need it
for the course. But I will leave it in the notes for the sake of completeness.



Theorem 4.31 (Informal) The independent columns of A, which you can
detect using RREF and Gauss Jordan, form a basis for the column space of
A. Therefore we have

dim(C(A)) = r = rank(A)

Intuition: The column space is equal to the span of A’s columns, this is the
name for all linear combinations. We know that taking linearly dependent
vectors out of a set does not change the span of the set. Hence the linearly
independent columns indeed form a basis of C(A). The rank is defined as the
number of linearly independent columns so C(A) has dimension rank(A).

2.2 Row Space R(A)
The row space of a matrix A € R™*" is defined as
R(A)={y'A|y eR"} CR"

So we define it as the linear combinations of all rows. A more natural ap-
proach would be to define it as

R(A)=C(AT) CR"
A key takeaway is that R(A) is a subspace of R™.

Nice, so how do we calculate the row space, i.e. find a basis of it? We could
find a basis of C(A"). This would work and we do use this but we can find
a basis using the RREF of A as well. Let’s see how to do it in a way that
sparks joy. We need a lemma first.

Lemma 3.5 Let A be an m X n matrix and M an invertible m X m matrix.

Then R(A) = R(MA).

Intuition: The row space of a matrix does not change if we multiply it with
an invertible matrix on the left.

Proof: We have
R(A) = C(AT) = C(ATMT) = C((MA)T) = R(MA)
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We know the first and last equations hold (see above). The third one is the
property of the matrix transpose. What we need to show is the second one.
So we set B := AT and N = M. We then show C(B) = C(BN), from the
lecture notes:

v € C(B)
I (Def. 2.9)
v = Bx for some x € R™
x:= Ny — 1 [} «—y:=N"'x, sox =Ny
v = BNy forsomey € R™
I (Def. 2.9)
v € C(BN). ]

Theorem 4.32 (Informal) Let R be in RREF, be the result of the Gauss
Jordan elimination on A. Then the first r columns of R" are a basis of R(A).
Therefore we have:

dim(R(A)) = r = rank(A)

Intuition: We represent the Gauss-Jordan elimination with an invertible
matrix M as R = M A. (Theorem 3.21). Above we prove that multiplying A
on the left with an invertible matrix does not change the row space, hence
R(A) = R(MA) = R(R). This means a basis for the latter is also a basis
for the former. We can easily read off a basis of R which is the nonzero rows
since these rows are linearly independent (private nonzeros) and the 0-rows
do not contribute to the span. We know there are r = rank(A) downward
steps in RREF so we have dim(R(R)) = dim(R(A)) =r



Theorem 4.33 let A be an m x n matrix. Then
rank(A) = rank(A")

Intuition: The row rank is equal to the column rank! You can deduce that
from dim(C(A)) = dim(R(A)) = dim(C(AT)). The first equation holds
because both sides are equal to rank(A) = r as we show above. The third

equation holds because R(A) = C(AT") (again, see above). So A" has so
many independent columns as A.

This fact also gives us that the rank must be smaller than min{n,m} for
A € R™"  (Theorem 4.533)

2.3 Nullspace N(A)

Definition 2.17 Let A be an m x n matrix. The nullspace of A is the set
of all solutions of Ax = 0:

N(A) = {x € R" | Ax = 0} C R"

This means we have all vectors that are taken to 0 by the linear transforma-

tion represented by A. This is why the nullspace is also referred as the kernel
of A: Ker(A).

A natural question is, how do we calculate a basis. At this point the Gauss
Jordan elimination helps us again. Yet, similar to what we did for the row
space, we have to remember a lemma first:

Lemma 3.3 (Invariance of the nullspace). Let A be an m x n matrix and
M an invertible m x m matrix. Then A and M A have the same nullspace,

N(A) = N(MA).

Now we are ready to find a basis of the nullspace. Here I am going to take the
example from the lecture notes and provide an explanation in other words.
We have:

120 3 120 3
A=|2 41 4 5R=1[00 1 -2
3625 000 0



Thanks to the lemma above we can see that N(A) = N(MA) = N(R) Also
we know that Rx = 0 hold for the 0 rows regardless of x because then we
have an equation that tells us 0'x = 0.

N

W N =

2 0 3 1 20 3
D) (o v ) w2y,
6 2 5 000 O

The nullspace of A, or equivalently the nullspace of R, consists of vectors x
that satisfy Rx = 0:

First of all realize that this equation Rx = 0 represents a system of linear
equations where we have 4 unknowns and 2 equations. We also know that
the rank is equal to 2. The system is underdetermined and we have 2 free
variables. That is, we can choose two variables as we wish and calculate the
other two such that all variables together satisfy the equation Rx = 0.

As we know the matrix vector multiplication is just the linear combination
of the columns of the matrix. If we separate the columns of A in a wise way
so that we have the identity matrix I and another matrix (), our equation

looks like
10 T + 2 3 To| 0
01 I3 0 —2 Ty - 0"
Basic arithmetic tells us:
1 0 I _ 2 3 )
0 1 T3 N 0 -2 T4

If you do the vector multiplication the equation boils down to the following
linear system of equations:

T = —2T9 — 324

T3 = 21‘4
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Remember that we have 2 free variables Here we have x5 and x4 as our free
variables, and plugging these values into the equations above, we directly
obtain the values of z; and z3 as well. In the lecture you have seen a table
as follows:

GINGINGE
oG- G )

This table from the lecture notes summarizes the whole approach and offers
that we choose the free variables one time as x5 = 1,24 = 0 and the second
time as z9 = 0,24 = 1. These choices provide us with two solutions for
Rx = 0 as well as Ax = 0, which are a basis of the nullspace N(A4). In
the literature these solutions are referred as the particular solutions. The
basis is:

-2 -3
1 0
0] 2
0 1

You can read the lecture notes for a formalization of this approach and a
formal proof, why the set we claim is a basis, is actually a basis.

Theorem 4.36 (Informal) Let R be in RREF, the result of Gauss-Jordan
elimination on A € R™*". The vectors, vy, ..., V,_, constructed as above

form a basis of N(A) = N(R) Hence:

dim(N(A)) =n —r =n —rank(A)

Intuition: We have so many rows in R in RREF as we have downward steps
in R, which is equal to the rank of A. Therefore in the equation Rx = 0,
the matrix without nonzero rows has dimensions r X n. This means we have
n — r free variables. We can choose those free variables to be one of the
n — r unit vectors each time to get a particular solution. Therefore we have

dim(IN(A)) =n —r =n —rank(A).



We can also get this result by arguing that N(A) is isomorphic to R"".
For our example above where we have s, x4 as free variables, 1 and x5 are
completely determined by x5 and x4. So the linear transformation

x

X2 X2
T : —

€3 Xyg

Xy

is bijective since there is only one possible input for one output and vice
versa. This approach is formalized with Lemma 4.35 in the lecture notes.

2.4 Left Nullspace LN(A)

The left nullspace of a matrix® is the set of row vectors:
LN(A)={yeR"|yA=0"} CR"

but if you take the transpose of both sides of the equation and write x := y '
where x is then a column vector, you can see that the above set is equivalent
to

LN(A)={xcR" | ATx =0} CR™
Sounds familiar? This is the nullspace of AT. Therefore a natural way to
define the left nullspace of a matrix is

LN(A) :=N(AT) CR™

With this definition you can immediately realize that LN(A) is a subspace
of R™.

Theorem (Informal) Let A be an m x n matrix with rank(A) = r and
let R = M A be in RREF, the result of Gauss Jordan elimination on A. The
last m — r rows of the matrix M are a basis of LN(A) and therefore the left
nullspace of A has dimension:

dim(LN(A)) = m —r = m — rank(A)

3The left nullspace is not included in the lecture notes anymore so you don’t need it
for the course. But I will leave it in the notes for the sake of completeness.
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Intuition: We know that the last m — r rows of R are 0 rows since R is in
RREF and there are r nonzero rows (r = #downwards steps = rank(A)).
R = MA tells us that the last m — r rows M, when multiplied with the
matrix A, give us the 0 rows in the bottom of R. Let uy,...u,, be the rows
of M:
C WA T
— w A

Ro = MA = 711:147
u, A

E
| A

If the last m—r rows are zero this means u,, 1, ... u,, € LN(A). Now we need
to show that this is a basis. The vectors are linearly independent because M
is invertible. (Inverse Theorem tells us all columns of an invertible matrix are
independent. We learned that row rank equals to column rank. Therefore
all rows of M are linearly independent.) We also know that dim(LIN(A)) =
dim(N(A")) = m — rank(A") = m — rank(A) = m —r. We have m —r
linearly independent vectors in m — r dimensional space. So these vectors
must be a basis by Observation 4.20.

2.5 The solution Space of Ax =Db

Definition 4.37 (Solution space of a system of linear equations). Let A be
an m X n matrix and b € R™. The set

Sol(A,b) :={x e R": Ax=b} CR"

is called the solution space of Ax = b.

You should be careful, if b # 0 then Sol(A,b) is not a subspace because it
does not include the zero vector. Instead we call such a shifted copy of a
subspace, an affine subspace.

The next theorem tells us the important relation between the nullspace and
the solution space.
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Theorem 4.38 (Solution space from shifting the nullspace). Let A be an
m X n matrix, b € R™. Let s be some solution of Ax = b. Then

Sol(A,b) ={s+x:x € N(A)}.

Intuition: If you shift the nullspace from the origin by a solution, then you
have the space of all solutions. The following proof is from the lecture notes.

Proof. We first show that every solution y € Sol(A4, b) is of the form s + x with x € N(A).
Indeed, we can write y as
y=s+ (y - S):
——

X

and due to Ax = Ay — As = b — b = 0, we have x € N(A). For the other direction, we
show that every vector y of the form y = s + x with x € N(A) is in Sol(A, b). For this, we

compute
Ay =As+ Ax=b+0=bh.

Number of Solutions: In the lecture notes there is a nice discussion about
the number of solutions to a system of equations Ax = b. The terms ”overde-
termined” and "underdetermined” are also defined there. You should read
that part to have a general understanding of the linear systems of equations.
In general there can be 0, 1, or infinitely many solutions and it is determined
mainly by the dimensions and the rank of the matrix.

KKk
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Second part of the lecture starts here. The references to the lecture notes are
going to be to the second part of the lecture notes.

XKk

3 Orthogonality

This section is about orthogonality of vectors and vector spaces. The first
definition defines what it means to be orthogonal for two vector spaces:

Definition 5.1.1. Two vectors v,w € R" are called orthogonal if

n
VTW = E V;W; = 0.
=1

Two subspaces V' and W are orthogonal if for all v € V and w € W, the
vectors v and w are orthogonal.

Intuition: In other words we name two vector spaces orthogonal if all vectors
in one vector space is orthogonal to all vectors in the other vector space.

We can make 3 important statements about the orthogonal vector spaces,
here without the proofs:

1. Bases are enough to determine if two vector spaces are orthogonal:

Let vq,..., v, be the basis of subspace V and let wq,..., w; be the
basis of subspace W. Then V and W are orthogonal if and only if v;
and w; are orthogonal for all 7 € [k] and j € [{|]. (Lemma 5.1.2.)

2. Bases of orthogonal spaces are linearly independent:

Let V and W be two orthogonal subspaces of R™. Let vy,...,v; be a
basis of subspace V. Let wy,...,w; be a basis of subspace W. The set
of vectors {vy,..., v, wy,...,w} are linearly independent. (Lemma
5.1.3.)
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3. Combining orthogonal subspaces give us another subspace, the dimen-
sion is the sum of the dimension of the orthogonal subspaces:

Let V and W be orthogonal subspaces. Then VNW = {0}. Moreover,
if dim(V') = k and dim(W) = [, then

dim({w+pw | peRveViweW}) =k+1<n

(Corollary 5.1.4.)

3.1 Orthogonal Complement

Now we are ready to define an important concept:

Definition 5.1.5. Let V be a subspace of R”. We define the orthogonal
complement of V' as:

Vi={wecR"|w'v=0forallveV}

In words, the orthogonal complement of V includes all vectors that are or-
thogonal to all vectors in V. All subspaces orthogonal to V are in V+,

The following theorem tells us that a vector space and its orthogonal com-
plement, complete each other to the whole vector space.

Theorem 5.1.7. Let V.W be orthogonal subspaces of R".

The following statements are equivalent.

(i) W=V-L
(i) dim(V) +dim(W) = n.
(iii) Every u € R" can be written as u = v+ w with unique vectorsve V, we W.

An important takeaway is for V' C R™:

R'=V+Vi={v+w|veV,weV'}
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We also have:
Lemma 5.1.8. Let V be a subspace of R". Then V = (V+)*.

This seems trivial but actually needs a proof. You know where to find it.

This discussion brings us back to the ”Big Picture of Linear Algebra” from
page 3. The 4 fundamental subspaces of A are linked together. Given as
Corollary 5.9 in the lecture notes, we have:

N(A) = C(AT)* and N(AT) = C(A)*

In words, the nullspace of A and the row space of A as well as the left
nullspace of A and the column space of A are respectively orthogonal com-
plements. The former is proven in Theorem 5.1.6.

There is one last Lemma, which is important and relevant for a few upcoming
topics e.g. for least squares.

Lemma 5.1.10. Let A € R™*". Then

N(A) = N(ATA) and C(AT) = C(AT A).

Proof. If x € N(A) then Ax = 0 and so A" Ax = 0, thus x € N(AT A).
For the other direction, assume x € N(A" A). Then

ATAx = 0.
Taking the inner product with x, we get
0=x"0=x"A"TAx = (Ax) " (Ax) = || Ax|]%.
Hence, ||Ax|* = 0 implies Ax = 0, so x € N(A).
For the second statement we utilize Corollary 5.1.9. We have

C(AT) =N(A)" =N(ATA)' =C((ATA)T) = C(ATA).
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The proof uses a very elegant method. If you show that [|Az|y = 0 or
| Az||2 = 0, which are actually equivalent, then this implies Az = 0. Because
only the vector 0 has norm 0. So if you have an equation in form of AT Az = 0
or z' ATA = 0 you can multiply both sides with = or ' respectively from
left /right to acquire T AT Ax = ||Ax|]2 = 0.
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Hints

. Solved In Class You can also see the section on nullspace above.
. Use your findings from the previous subtasks if you are stuck.

. No hints.

. Remember ||v + wl|? = ||v|? + ||w]|* + 2v'w for a.

. For b you need vectors that does not have first or second elements equal
to 0. In general remember W is a hyperplane. You can propose vectors
to be the basis and then show that those vectors are in fact a basis by
arguing they are linearly independent and there are dim(W) of them.
This naturally only applies to subtasks where the answer is yes.

. No hints.

mkilic

)
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