
Linear Algebra
Week 2

G-17

2 X 2025

1 Matrices and Linear Combinations

Matrices are a set of vectors. But they are more than that. They are linear
systems of equations and also functions. Matrices are images, neural network
models, backbone of AI and computation.

1.1 Definitions

Matrices are rectangular array of (real) numbers. Here is an m× n matrix:

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

. . .
...

am1 am2 am3 . . . amn

 , A ∈ Rm×n

There are other notations which make writing and understanding the matri-
ces relatively easier.

A =

 | | |
v1 v2 . . . vn
| | |


(a) Column Notation


— u1 —
— u2 —

...
— um —


(b) Row
Notation
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1.2 Matrix Addition and Scalar Multiplication

Matrix addition and scalar multiplication are defined element-wise. This is
why, in order to add two matrices A and B their dimensions must match!

Matrix Addition: A+B

=


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

+


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn



=


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

anm1 + bm1 am2 + bm2 . . . amn + bmn



Scalar Multiplication: λ · A

=


λ · a11 λ · a12 . . . λ · a1n
λ · a21 λ · a22 . . . λ · a2n

...
...

. . .
...

λ · am1 λ · am2 . . . λ · amn



1.3 Matrix Shapes

The names that we came up with to describe the matrices might sound funny
but they tell us a lot about the matrix. For now just be aware of the intuitive
names:
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Figure 2.1. from the lecture notes

1.3.1 Square Matrices

There are special square matrices. We use them at various tasks as you will
see later. Be aware of the fact that the definition of these matrices are made
on square matrices in the lecture notes. This implies that a non square
matrix can not belong to one of these categories.

Examples from lecture notes p.48

A square matrix can be attributed with more than one of the features listed
above. For example a diagonal matrix is an upper triangular and also a lower
triangular matrix, it is symmetric as well. E.g. a zero matrix has all four
features together.

1.4 Matrix Vector Multiplication

Matrix vector multiplication is nothing else than the linear combination of
the columns of the matrix.

2

13
4

+ 3

29
7

 =

1 2
3 9
4 7

[
2
3

]
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In general:

A =

 | | |
v1 v2 . . . vn
| | |

 ∈ Rm×n,x =


x1

x2

. . .
xn

 ∈ Rn

Their multiplication is the linear combination of the column vectors of the
matrix A:

Ax :=
n∑

j=1

xjvj ∈ Rm

In column notation: with xi ∈ R (scalar) and vi ∈ Rm: | | |
x1v1 x2v2 . . . xnvn

| | |


Observation 2.5 Let A be an m× n matrix.

(i) A vector b ∈ Rm is a linear combination of the columns of A if and
only if there is a vector x ∈ Rn (of suitable scalars) such that Ax = b.

(ii) The columns of A are linearly independent if and only if x = 0 is the
only vector such that Ax = 0.

You can also view the matrix vector multiplication as the scalar products of
the rows of the matrix with the given vector.

Observation 2.8 Matrix-vector multiplication with A in row notation Let

A =


− u⊤

1 −
− u⊤

2 −
...

− u⊤
m −

 ∈ Rm×n, x ∈ Rn. Then Ax =


u⊤
1 x

u⊤
2 x
...

u⊤
mx


︸ ︷︷ ︸

m scalar products

.
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1.5 Column Space

Column space of a matrix is the span of its column vectors. Formally for
A ∈ Rm×n the column space C(A) is:

C(A) := {Ax : x ∈ Rn} ⊆ Rm

Zero is always in the column space of a matrix. 0 ∈ C(A). Do not forget
that the 0 is an abuse of notation here and 0 ∈ Rm just as any vector in
C(A).

1.6 Rank

As simple as it seems, the rank of a matrix is one of the most important
features of a matrix.

The rank of a matrix is the number of its independent columns.

A column of the matrix vj is independent if it can not be written as the
linear combination of the previous columns.
An important observation is that a matrix A ∈ Rm×n (a matrix that has n
columns) can only have

0 ≤ rank(A) ≤ n

Note: rank(A) = 0 only if A = 0, the zero matrix.

1.7 The Transpose

There are many ways to think about the transpose of a matrix:

• You get the transpose of a matrix by mirroring the entries along the
diagonal.

• The entry in aij of a matrix A is swapped with aji.

• Transposing a matrix interchanges columns with rows.

A =

1 2
3 9
4 7

 A⊤ =

[
1 3 4
2 9 7

]
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Remember we also have transposes of vectors. With this fact, it is easier
to think about the transpose of a matrix in terms of column and vector
notations.

The transpose in column and row notations, form lecture notes p.54

Important Notes on the Transpose:

Mirroring tow times gives us the initial matrix: (A⊤)⊤ = A.
A square matrix is symmetric if and only if A = A⊤. (use this for proofs/calculations)

1.8 Row Space

Row space of a matrix is the span of its rows. Since the rows of A are the
columns of A⊤ we can define the row space of a as follows:

R(A) := C(A⊤)

Similarly we define the row rank of a matrix as the number of its independent
rows, or equivalently the number of the independent columns of its transpose.

Note that for all matrices the following relation holds:

row rank = column rank

Which we are going to proof later.
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2 Nullspace

Nullspace is one of the fundamental spaces associated with a matrix. It
consists of all the vectors that result in the zero vector 0 when multiplied
with a matrix A. By this definition, 0 vector is always in the Nullspace of
any matrix. Formally:

N(A) = {x ∈ Rn : Ax = 0} ⊆ Rn

An important observation is that if an m×n matrix has N(A) = {0}, ie 0 is
the only vector in the Nullspace, then the columns of the matrix are linearly
independent according to Observation 2.5.

3 Linear Transformations

Linear Transformations are one of the fundamental concepts of linear algebra.
Under the hood matrices are tools to represent linear transformations. At
this point we should consider matrices as functions.

3.1 Matrices as Functions

Matrices are functions! They are defined as follows in the lecture notes:

Definition 2.18 (Matrix transformation)Let A be an m × n matrix.
TA : Rn 7→ Rm is the function where x ∈ Rn and Ax ∈ Rm defined by:

TA(x) = Ax

This shows that every matrix defines a linear transformation.

There is an important set of observations about matrices as functions, that
show that these transformations are linear:
Observation Let A be an m× n matrix, x,y ∈ Rn and λ ∈ R. Then

1. A(x+ y) = A(x) + A(y) and

2. A(λx) = λA(x).
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By combining (i) and (ii), we also get

TA(λx+ µy) = λTA(x) + µTA(y).

More formally:

Lemma 2.19 Let A be an m×n matrix, x1,x2 ∈ Rn and λ1, λ2 ∈ R. Then

A(λ1x1 + λ2x2) = λ1Ax1 + λ2Ax2.

To understand in what ways a matrix transforms a vector we are specifically
interested in the standard unit vectors e1, e2, . . . , en. To intuitively sum up
why, it is because we can express everything in a space Rn using the set of
standard unit vectors. If we know what A does to this set of vectors, we can
generalize the effect of A to all vectors in Rn.

This is demonstrated below. If you know what happens to the unit square
(little red guy), then you can generalize that effect to any other shape or e.g.
to any set of vectors.

Example
from HS23

Certain operations have special names that intuitively describe the operation
a matrix does on a given object.

8



Special Linear Transformations
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4 Hints

1. In-Class

2. Section 2.1.4 from the lecture notes is helpful.

3. a) You can try to visualize this on unit vectors in R3. You can also
first consider the matrix [

1√
2

− 1√
2

1√
2

1√
2

]

4. No hints.

5. No hints.

6. d) Write the matrix A ∈ R3×3 in a generic way. Remember that if you
can find one vector other than 0 with Ax = 0, then you can prove
rank(A) ≤ 2.

7. No hints.

mkilic
♠
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