
Linear Algebra
Week 5

G-17

23 X 2025

1 Linear Systems of Equations (LSE’s)

We are going to handle equations of type Ax = b in this chapter. Let’s see
how linear systems of equations can be represented as a matrix and a vector.
Let our LSE be as in the following:

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

...

am1x1 + am2x2 + · · ·+ amnxn = bm,

This suspiciously looks similar to a matrix vector multiplication! If it is
not clear to you how, notice that each row i of coefficients ai1 . . . ain gets
multiplied with our unknown variables xi. Seeing the matrix-vector picture
might help:

Ax = b :


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


︸ ︷︷ ︸

A,m×n


x1

x2
...
xn


︸ ︷︷ ︸
x∈Rn

=


b1
b2
...
bm


︸ ︷︷ ︸
b∈Rm

.
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2 Gauss Elimination

We can represent linear systems of equations in form of Ax = b using matrix
vector multiplication. But how about solving the LSE? Our first algorithm is
Gauss Elimination, which actually is the classic algorithm for solving linear
systems of equations. It consists of two steps: elimination and back substi-
tution. For this week we assume that our coefficient matrix is m×m, which
means that we have a linear system of equations in m equations and m vari-
ables. This is the nice case, we will deal with different number of equations
and variables later.

If you find a step difficult to understand, go to the subsection below 2.3
Example: Solving Ax = b using Gaussian Elimination to see the theory in
practice.

2.1 Elimination

We want to generate an upper triangular matrix U using our initial matrix
A and the vector b. We want to transform the equation Ax = b into another
equation Ux = c where U is an upper triangular matrix and x, the solutions
are the same for both systems. In other words we want to create equivalent
systems.

It is going to become obvious why we want an upper triangular matrix when
we handle back substitution.

There are two main row operations to perform the elimination:

• row subtraction

• row exchange

These operations do not change the solution of the system when applied on
both A and b. This is why we usually concatenate A and b when we perform
these elimination steps as follows: |

A | b
|


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Both operations can be represented as linear transformations!
In the following there are the matrices that represent these linear transfor-
mations in the general case:

(a) Elimination (b) Permutation

Here Eij represents the elimination matrix that is supposed to create a zero
entry in row i and column j and the permutation matrix Pjk swaps row j
with row k. To better convince yourself to this you can think of the matrix
multiplication EijA as linear combinations of the rows of A using the row
vectors of Eij as the coefficients. The i-th row of EijA is −c times the jth
row of A plus 1 times the ith row of A.

When do we use the row operations?
We try to generate an upper triangular matrix with nonzero elements on the
diagonal. So if we have a nonzero element under the diagonal, we subtract
one column from the other to get rid of it. We exchange rows when we get
a zero element on the diagonal,i.e. when we have a pivot that is equal to 0.

The diagonal entry of the current column is called the pivot.

After completing the elimination we are left with the equation Ux = b that
has the same solutions as our initial equation Ax = b. We are going to prove
this but first let’s continue solving the LSE with back substitution:

2.2 Back Substitution

After we get to an upper triangular matrix, we have our equation suitable
for back substitution. This step is not different than what you would do in
high school to solve a linear system of equations. Let’s see it in the 3 × 3
example from the lecture notes:
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And the back substitution in the direction of the arrow on the right:

Using the variables, for which we already have calculated the value, we can
calculate the values of other variables. A way to formalize this is:

xi =
bi −

∑m
j=i+1 aijxj

aii

Since we know all xj here, we can calculate xi.

2.3 Example: Solving Ax = b using Gauss Elimination

We are given the system of linear equations represented as:0 2 1 | 1
2 −3 4 | −2
1 1 −2 | 0


We wish to solve the system Ax = b. First, we will perform Gaussian
elimination by applying elimination matrices and a permutation matrix.

• Step 1: Apply a Permutation Matrix to Swap Rows

Since the first pivot is zero, we swap row 1 with row 2 using a permu-
tation matrix P :

P =

0 1 0
1 0 0
0 0 1


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After applying the permutation, the augmented matrix becomes:2 −3 4 | −2
0 2 1 | 1
1 1 −2 | 0


• Step 2: First Elimination Matrix E31

We eliminate the entry below the first pivot (2 in the (1, 1) position)
by subtracting half of row 1 from row 3. The elimination matrix E31

is:

E31 =

 1 0 0
0 1 0
−1

2
0 1


After applying E31, the matrix becomes:2 −3 4 | −2

0 2 1 | 1
0 5

2
−4 | 1


• Step 3: Second Elimination Matrix E32

We now eliminate the entry below the second pivot (2 in the (2, 2)
position) by subtracting 5

4
of row 2 from row 3. The elimination matrix

E32 is:

E32 =

1 0 0
0 1 0
0 −5

4
1


After applying E32, the augmented matrix becomes:2 −3 4 | −2

0 2 1 | 1
0 0 −11

4
| 9

4


︸ ︷︷ ︸

U | c
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Final Upper Triangular Form

Thus, we have reduced the system to an upper triangular form. The final
system is:

Ux = c

where:

U =

2 −3 4
0 2 1
0 0 −11

4

 and c =

−2
1
9
4


We can now solve for x by back-substitution.
From the third equation:

−11
4
x3 =

9
4

⇒ x3 =
9
4

−11
4

= − 9
11
.

From the second equation using x3 = − 9
11
:

2x2 + x3 = 1 ⇒ 2x2 = 1− x3 = 1 + 9
11

= 20
11

⇒ x2 =
10
11
.

From the first equation using x2 =
10
11

and x3 = − 9
11
:

2x1 − 3x2 + 4x3 = −2 ⇒ 2x1 − 3
(
10
11

)
+ 4

(
− 9

11

)
= −2.

2x1− 30
11
− 36

11
= −2 ⇒ 2x1− 66

11
= −2 ⇒ 2x1−6 = −2 ⇒ x1 = 2.

And we are done! The vector x ∈ R3 that satisies Ax = b is:

x =

 2
10
11

− 9
11

 .

We found a solution! However this is not always the case. Depending on the
particular LSE there might be infinitely many solutions or no solutions at all
and our algorithm might fail in some cases. To be more precise, we get stuck
if we can’t make the pivot nonzero using row exchanges. You can see the pdf
on my website What does failure actually mean in Gaussian Elimination? to
gain a little more insight on what might happen when the algorithm fails.
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2.4 Row Operations: the general picture

There are important lemmas that formalize our intuition about the algorithm
and actually prove that it solves the LSE. The most important one is:

Lemma 3.2 (Invariance of solutions). Let A be an m×n matrix and M an
invertible m ×m matrix. Then the two systems Ax = b and MAx = Mb
have the same solutions x.

Lemma 3.2 justifies that Gauss elimination with back substitution finds
the solution of the actual LSE and does not change it with row subtractions
and permutations. Note that both row subtractions and permutations are
repreented with invertible matrices. To invert them simply add the row back
or swap the two rows back!

Lemma 3.3 (Invariance of the nullspace). Let A be an m × n matrix and
M an invertible m ×m matrix. Then A and MA have the same nullspace,
N (A) = N (MA).

Lemma 3.4 (Invariance of linear independence). Let A be an m×n matrix
and M an invertible m×m matrix. Then the following is true: A has linearly
independent columns if and only if MA has linearly independent columns.

You can use Lemma 3.3 to prove Lemma 3.4

Lemma 3.5 (Invariance of the row space). Let A be an m× n matrix and
M an invertible m×m matrix. Then A and MA have the same row space,
R(A) = R(MA).

This has a beautiful proof in the lecture notes and I recommend to read all
proofs, but to convince you to this fact (Lemma 3.5.) you can think of
the gauss eliminations as creating new linear combinations of the rows of
A. Because the matrix multiplication MA can be considered as the linear
combination of the rows of A using the rows of M as coefficients. The rows
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of M are themselves linearly independent (because M is invertible), so the
linear combinations of the rows of A are going to have the same span they
had before the linear combination.1

One must be careful that the same property does NOT hold for the column
space. In general C(A) is not equal to C(MA). You can find a counterex-
ample in the lecture notes. We can however come to a conclusion about the
rank of both matrices.

Lemma 3.6 (Invariance of independent column indices and rank). Let A
be an m × n matrix, M an invertible m ×m matrix. Then the following is
true for all j ∈ [n]: column j of A is independent if and only if column j
of MA is independent. In particular, A and MA have the same number of
independent columns and therefore also the same rank.

Finally, we can say when the elimination fails and when it succeeds. This is
the case when the columns of A are linearly independent. This makes sense
since m linearly independent vectors can span the whole Rm so there exists a
unique x ∈ Rm for every b ∈ Rm such that Ax = b, given that the columns
of A are linearly independent. The following theorem formalizes this. You
can find a beautiful proof in the lecture notes.

Theorem 3.8 (Solving Ax = b with Gauss elimination). Let Ax = b be a
system of m linear equations in m variables. If A has linearly independent
columns, then Gauss elimination (Algorithm 2) with back substitution (Al-
gorithm 1) computes the unique solution x of the system. If A has linearly
dependent columns, then Gauss elimination fails.

1Keep in mind that this is not a formal proof.
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2.5 Runtime

It is always good to know the runtime of an algorithm you use. Here it is
for Gauss Elimination. You can find the full runtime analysis in the lecture
notes.

For m equations and m unknowns:

• Gauss Elimination: O(m3)

• Back Substitution: O(m2)

• Gauss Elimination with Back Substitution: O(m3)

• Calculating the inverse of an invertible m×m matrix as in Algorithm
3 from the lecture notes: O(m3)

To see how one can calculate the inverse using Gauss Elimination and Back
Substitution you can see the corresponding document on my website.
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3 Hints

1. Solved In Class

2. A is invertible if and only if Ax ̸= 0 for all x ̸= 0. Use it and show
that none of the entries of Ax is equal to 0.

3. This one is very similar to the in class exercise. Make a linear system
of equations out of the given data points. Remember, the variables you
want to find are a, b, c.

4. Try to represent AA−1 = I as three separate systems of equations.
Be careful with division. You can divide by a variable µ that might
be zero with the constraint that µ ̸= 0 and afterwards you must
specify what happens when that variable is zero. In other words make
a small case distinction.

5. You can first guess the inverse and then verify that AA−1 = I by direct
computation or calculate the inverse using Gauss elimination with back
substitution. b) Assume that the pattern from A holds in general. Try
to generalize it by writing the columns of the inverse using unit vectors.
Then show that the matrix you described is actually the inverse.

6. Try to write the equations using matrices as in W = VM .

mkilic
♠
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