Linear Algebra In-Class Exercise Week 2

G-17

2 X 2025

1. Rank of a matrix (in-class) (★★☆)

Let $m\in\mathbb{N}_{\geq 2}$ be arbitrary and consider the $m\times m$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mm} \end{bmatrix}$$

with $a_{ij}=i+j$ for all $i,j\in\{1,2,\ldots,m\}$. Determine the rank of A. You need to justify your answer.

1 Intuition

It is always good practice to handle the situation at a concrete example to gain intuition about the task.

Let m = 4. Then our matrix A is:

$$\begin{bmatrix} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

In order to determine the rank we should look at the columns of A since rank is defined as the number of independent columns. A quick scan begin-

ning from the first column shows us that the first two columns are independent. Okay but how do we see this?

Let $\mathbf{v}_1, \mathbf{v}_2$ be the first two column vectors. We know that two vectors are linearly dependent if one of them can be written as a scalar multiple of the other. This means for $\mathbf{v}_1, \mathbf{v}_2$ to be dependent there must exist a $\lambda \in \mathbb{R}$ that satisfies: $\lambda \cdot \mathbf{v}_1 = \mathbf{v}_2$. However, this would mean that $\lambda \cdot 2 = 3$ and $\lambda \cdot 3 = 4$ (considering only the first two elements of \mathbf{v}_1 and \mathbf{v}_2). To satisfy these equations λ has to be equal to both $\frac{3}{2}$ and $\frac{4}{3}$. This gives us the contradiction we want and prove that \mathbf{v}_1 and \mathbf{v}_2 are linearly independent.

To see that the other vectors are dependent, note that
$$\mathbf{v}_2 - \mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

If you add the vector
$$\mathbf{v}_2 - \mathbf{v}_1$$
 to the vector \mathbf{v}_2 you get the third column $\mathbf{v}_2 + (\mathbf{v}_2 - \mathbf{v}_1) = \begin{pmatrix} 3\\4\\5\\6 \end{pmatrix} + \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 4\\5\\6\\7 \end{pmatrix}$ Analogously you can also write

the fourth column as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . This is why only independent vectors are \mathbf{v}_1 and \mathbf{v}_2 , so $\mathbf{rank}(A) = 2$.

2 Solution

Above we had an example, but not a proof. Now we have to argue for all m's formally. Note that this solution is slightly different than the master solution.

Let
$$m \in \mathbb{N}_{\geq 2}$$
 be arbitrary and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \in \mathbb{R}^m$ such that $A = \begin{bmatrix} | & | & & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_m \\ | & | & & | \end{bmatrix}$

Since \mathbf{v}_1 is not equal to the zero vector, the rank is at least 1. Besides there exists no $\lambda \in \mathbb{R}$ s.t. $\lambda \cdot \mathbf{v}_1 = \mathbf{v}_2$ since this λ would have to satisfy

$$2 \cdot \lambda = a_{11} \cdot \lambda = a_{12} = 3$$

by looking at the first coordinates and

$$3 \cdot \lambda = a_{21} \cdot \lambda = a_{22} = 4$$

by looking at the second coordinates. This would yield $\frac{3}{2} = \lambda = \frac{4}{3}$, an equation that does not hold. Therefore \mathbf{v}_1 and \mathbf{v}_2 are linearly independent and A has rank at least two. (So far the same as the intuition.)

Now see that
$$\mathbf{v}_2 - \mathbf{v}_1 = \begin{pmatrix} a_{21} \\ a_{22} \\ \vdots \\ a_{2m} \end{pmatrix} - \begin{pmatrix} a_{11} \\ a_{12} \\ \vdots \\ a_{1m} \end{pmatrix} = \begin{pmatrix} (2+1) - (1+1) \\ (2+2) - (2+1) \\ \vdots \\ (2+m) - (1+m) \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

A more formal notation is writing $\mathbf{v}_2 - \mathbf{v}_1 = ((2+i) - (1+i))_{i=1}^m = (1)_{i=1}^m$

Now that we managed to write the vector $\mathbf{1} \in \mathbb{R}^m$ as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 , we can use it to create the other columns of A by adding it to \mathbf{v}_1 just as we did in the intuition part.

First we calculate $\mathbf{v}_j - \mathbf{v}_1$ for any $3 \le j \le m$:

$$\mathbf{v}_j - \mathbf{v}_1 = (a_{ij} - a_{i1})_{i=1}^m = ((i+j) - (i+1))_{i=1}^m = ((j-1))_{i=1}^m$$

This means that the difference between the column j of A and the first

column of
$$A$$
 is equal to
$$\begin{pmatrix} j-1 \\ j-1 \\ \vdots \\ j-1 \end{pmatrix} \in \mathbb{R}^m.$$

To conclude the proof we combine our findings so far: for any arbitrary j with $3 \le j \le m$:

$$\mathbf{v}_{j} - \mathbf{v}_{1} = \begin{pmatrix} j-1\\ j-1\\ \vdots\\ j-1 \end{pmatrix} = (j-1) \cdot \begin{pmatrix} 1\\ 1\\ \vdots\\ 1 \end{pmatrix} = (j-1) \cdot (\mathbf{v}_{2} - \mathbf{v}_{1})$$

$$\Rightarrow \mathbf{v}_{j} - \mathbf{v}_{1} = (j-1) \cdot (\mathbf{v}_{2} - \mathbf{v}_{1})$$

$$\Rightarrow \mathbf{v}_{j} - \mathbf{v}_{1} = j \cdot \mathbf{v}_{2} - j \cdot \mathbf{v}_{1} - \mathbf{v}_{2} + \mathbf{v}_{1}$$

$$\Rightarrow \mathbf{v}_{j} - \mathbf{v}_{1} = (j-1) \cdot \mathbf{v}_{2} + (1-j) \cdot \mathbf{v}_{1}$$

$$\Rightarrow \mathbf{v}_{j} = (j-1) \cdot \mathbf{v}_{2} + (2-j) \cdot \mathbf{v}_{1}$$

We showed that any column of A can be written as a linear combination of the first two columns \mathbf{v}_1 and \mathbf{v}_2 which are themselves linearly independent from each other. Therefore the matrix A has only 2 independent columns. We conclude $\mathbf{rank}(A) = 2$ for all m.

mkilic