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1 Solution

The question defines lines as sets. In particular sets of linear combinations of
one vector w, which is only scalar multiples of w. This means that in order
to prove L = {λ · u : λ ∈ R} we have to show the equality of two sets.

How to show the equality of two sets?

In general when we want to show the equality of two sets A,B, we show
A ⊆ B and B ⊆ A. If the two conditions hold together then we can conclude
that the two sets are equal.
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The following pages have the necessary steps of the proofs and also some
explanations to make it clear.

a)

• We have u ∈ L and u ̸= 0 given. Since every element in L can be
written as a scalar multiple of w we can write (for some λu ∈ R where
λu ̸= 0 since u ̸= 0):

u = λu ·w

• Now we show that any element in L is also in {λ · u : λ ∈ R} i.e.
L ⊆ {λ · u : λ ∈ R}

• Let v ∈ L be arbitrary. Since v is on our line L, by the definition of L
we must have some λv ∈ R such that: v = λv ·w

• Now write w in terms of u as w = 1
λu

·u. This gives us v = λv

λu
·u Since

we can write v as a scalar multiple of u this means v ∈ {λ ·u : λ ∈ R}

• Because v was arbitrary, i.e. we were observing any element from the
set L, the previous point proves that L ⊆ {λ · u : λ ∈ R}

• Now we prove the other direction: {λ ·u : λ ∈ R} ⊆ L For this take an
arbitrary vector v′ ∈ {λ · u : λ ∈ R}. We know v′ = λv′ · u

• We also know that u = λu ·w from the first point.

• Combining the last two points gives us v′ = λv′ · u = λv′λuw Since we
can write v′ as a linear multiple of w, we can conclude that v′ ∈ L

• Since v′ was arbitrary, i.e. we were observing any element from the set
{λ · u : λ ∈ R}, the previous point proves that {λ · u : λ ∈ R} ⊆ L

• The subset relation in both ways prove that L = {λ · u : λ ∈ R}

□
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b)

• Let L1 and L2 two lines in Rm. This means by definition of a line that
there exist w1,w2 ∈ R such that:

L1 = {λ ·w1 : λ ∈ R} and L2 = {λ ·w2 : λ ∈ R}

• We know 0 ∈ L1 ∩ L2 this means 0 ∈ L1 and 0 ∈ L2 because we have
0 = 0 ·w1 = 0 ·w2 (we can choose λ = 0 for L1 and L2)

• Now assume L1 ∩L2 ̸= {0}. In words let’s assume that there are more
than just the vector 0 in the intersection of the two lines.

• Since the intersection is not empty by our assumption we have a non-
zero vector u ∈ L1 ∩ L2. This means u ∈ L1 and u ∈ L2.

• Using the sub-task a) we can see that u ∈ L1 means L1 can be written
as L1 = {λ · u : λ ∈ R} and u ∈ L2 means L2 can also be written as
L2 = {λ · u : λ ∈ R}

• This means, if the two lines share a non-zero element, they are exactly
the same lines, i.e. L1 = L2.

□

c)

• Since L is a line there must be a vector w =

(
w1

w2

)
∈ R2 such that

L = {λw : λ ∈ R}

• We want w · d = w1d1 + w2d2 = 0. Because then d is orthogonal to w
and thus it is orthogonal to all vectors in L.

• Now we guess d the most intuitive way. If we choose d1 = −w2 and
d2 = w1 then we have w1d1 + w2d2 = −w1w2 + w2w1 = 0.

• We now prove (for our selection of d from the previous point)

L = {v ∈ R2 : v · d = 0}
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• ⊆: Let u = λuw be an arbitrary element of L. Then we have

u · v = (λuu) · d = λu(u · d) = 0

Hence we can say that u is also an element of the hyperplane {v ∈ R2 :
v · d = 0}. We have proven the ⊆ direction.

• ⊇: Consider a vector u ∈ {v ∈ R2 : v · d = 0} to be an arbitrary
element of the hyperplane. Per definition of the hyperplane we have

u · d = −u1w2 + u2w1 = 0 (⋆)

• We note that since L defines a line and by the definition of a line the
spanning vector w cannot be the zero vector, we have either w1 ̸= 0
or w2 ̸= 0. Now for these two cases we proceed separately. We do this
distinction because we want to divide by w1 or w2 and we have to make
sure that we do not divide by 0.

• w1 ̸= 0: Using (⋆) we can write u2 = w2

w1
u1. We look for a λ ∈ R such

that we have u = λw.

u =

(
u1

u2

)
=

(
u1

w2

w1
u1

)
=

(
λw1

λw2

)
= λw

Now you can solve two equations with one unknowns or you can realize
from the first equation that choosing λ = u1

w1
satisfies the equation

above.

• w2 ̸= 0: Again using (⋆) we can write that u1 =
w1

w2
u2. Now the λ such

that u = λw must satisfy:

u =

(
u1

u2

)
=

(
w1

w2
u2

u2

)
=

(
λw1

λw2

)
= λw

Now you can realize that choosing λ = u2

w2
satisfies the equation above.

• Since we were able to calculate a λ ∈ R such that u = λw in all cases,
we conclude that u ∈ L.

• The subset relation in both ways prove that L = {v ∈ R2 : v · d = 0}

□
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