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1 Linear Transformations

Linear Transformations (and linear functionals) are one of the fundamental
concepts of linear algebra. Under the hood matrices are tools to represent
linear transformations. At this point we should consider matrices as func-
tions.
We already have the intuition on linear transformations since they are equiv-
alent to the function a matrix represents. We will prove this fact but before
that here is a formal definition from the lecture notes:

Definition 2.21 (Linear transformation, linear functional) A function
T : Rn 7→ Rm is called a lienar transformation and a function Rn 7→ R is
called a linear functional, if the following linearity axiom hold for all x1,x2 ∈
Rn and all λ1, λ2 ∈ R.

T (λ1x1 + λ2x2) = λ1T (x1) + λ2T (x2)

As an immediate observation we can say:
Observation 2.2. Every matrix transformation us a linear transformation.
Because we defined a matrix transofrmation as TA(x) = Ax and we know
that A(λ1x1 + λ2x2) = λ1Ax1 + λ2Ax2
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In the equation T (λ1x1+λ2x2) = λ1T (x1)+λ2T (x2) we have two properties.
One says that we can first add the inputs and then feed them into the function
or first feed the inputs separately to two function instances and then add
the outputs. The result will be the same. Second property says we can
first multiply the input with a scalar and then feed the product into the
function or first give the input to the function and then multiply the output
with a scalar. The two results will still be the same. The following lemma
takes those two properties apart and offers an alternative definition for linear
transformations.

Lemma 2.23. A function T : Rn → Rm / T : Rn → R is a linear transfor-
mation / linear functional if and only if the following two linearity axioms
hold for all x,x′ ∈ Rn and all λ ∈ R:

(i) T (x+ x′) = T (x) + T (x′), and

(ii) T (λx) = λT (x).

Proof: We can show that the two definitions from Definition 2.21 and
Lemma 2.23. are equivalent.

Def2.21 ⇒ Lemma2.23 : Choose x1 = x and x2 = x′ and λ1 = λ2 = 1.
Then Definition 2.21 tells us that

T (x+ x′) = T (λ1x1 + λ2x2)
Def2.21
= λ1T (x1) + λ2T (x2) = T (x) + T (x′)

This shows (i) from the lemma and similarly you can show (ii) by choosing
x1 = x,x2 = 0, λ1 = λ, λ2 = 0.
Lemma2.23 ⇒ Def2.21 : If we assume Lemma 2.23 then we can show that
Definition 2.21 holds via direct computation and using (i) and (ii):

T (λ1x1 + λ2x2)
(i)
= T (λ1x1) + T (λ2x2)

(ii)
= λ1T (x1) + λ2T (x2).

To understand in what ways a matrix transforms a vector we are specifically
interested in the standard unit vectors e1, e2, . . . , en. To intuitively sum up
why, it is because we can express everything in a space Rn using the set of
standard unit vectors. If we know what A does to this set of vectors, we can
generalize the effect of A to all vectors in Rn.
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This is demonstrated below. If you know what happens to the unit square
(little red guy), then you can generalize that effect to any other shape or e.g.
to any set of vectors.

Example from HS23

Lemma 2.24 Let T : Rn → Rm / T : Rn → R be a linear transformation /
linear functional. Then

T (0) = 0 / T (0) = 0.

This is very important. So repeat once more:

0 is always mapped to 0 by a linear transformation/functional: T (0) = 0 T (0) = 0

An important lemma that formalizes the axiom of linearity for more than
two vectors is the following which comes with a proof by induction that I
recommend reading from the lecture notes.
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Lemma 2.25. Let T : Rn → Rm / T : Rn → R be a linear transformation
/ linear functional, let x1,x2, . . . ,xℓ ∈ Rn and λ1, λ2, . . . , λℓ ∈ R. Then

T

(
ℓ∑

j=1

λjxj

)
=

ℓ∑
j=1

λjT (xj).

1.1 The Matrix of a linear Transformation

We have seen that every matrix A defines a linear transformation TA above
(Observation 2.22). This theorem states the other direction: Every linear
transformation T : Rn 7→ Rm (Definition 2.27) is of the form T = TA for a
unique m× n matrix A.

Theorem 2.29. Let T : Rn 7→ Rm be a linear transformation. There exists
a unique m× n matrix A such that T = TA. This matrix is:

A =

 | | |
T (e1) T (e2) . . . T (en)

| | |



Proof: For a given vector we want to create the same effect as a linear
transformation using a matrix. An important set of vectors to observe is the
set of unit vectors. Because as mentioned earlier, we can generalize the effect
of a linear transformation if we know what happens to the unit cube.

We want an A s.t. T (x) = TA(x) = Ax. In particular we want this to hold
for the unit vectors: T (ei) = Aei for i ∈ [n]. But multiplying a matrix
with the i-th unit vector means to choose the i-th column of that matrix.
And since we want this matrix to have the same effect as the given linear
transformation, we put the result of T (ei) to the i-th column of the matrix.
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A =

 | | |
T (e1) T (e2) . . . T (en)

| | |


Now we definitely have T (ei) = Aei. How about other vectors that are not
the standard unit vectors? We can deconstruct them as a linear combination
of the unit vectors! An example from 3 dimensions is:x1

x2

x3

 = x1

1

0

0


︸ ︷︷ ︸

e1

+x2

0

1

0


︸ ︷︷ ︸

e2

+x3

0

0

1


︸ ︷︷ ︸

e3

.

So in general we can write x =
∑n

i=1 xiei. Using this fact and the linearity
axiom for linear transformations we can write:

TA(x) = Ax =
n∑

j=1

xjT (ej) = T

(
n∑

j=1

xjej

)
= T (x).

The second equality writes the matrix vector multiplication as the linear
combination of the columns of the matrix A. Using that A is our candidate
matrix from above, we can write T (ej) instead of vj as the j-th column of A.
This brings us to the third equation which is just an implementation of the
linearity axioms. Last but not least, the fourth equation is justified because∑n

j=1 xjej is equivalent to multiplying the vector x with the identity matrix.

□

1.2 Matrix Multiplication and Linear Transformation

We can combine linear transformations and represent the composition as
matrix multiplication. We should first define what a composition of functions
formally is.

Definition 2.33 (Composition of functions). Let g : X → Y and f : Y →
Z be two functions whereX, Y, Z are arbitrary sets. The function h : X → Z,

h : x 7→ f(g(x))
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is the composition of f and g, written as f ◦ g (“first apply g, then f”).

Take a close look at the input and output domains. the function g gives
outputs in the correct from the ”correct” domain to f . Now in the same way
we can compose matrix transformations:

Lemma 2.34. Let T : Rn 7→ Ra and TB : Ra 7→ Rm be two matrix
transformations. Then their composition TA ◦ TB : Rn 7→ Rm is another
matrix transformation.

How can we combine the matrices that correspond to the separate operations
TA and TB to represent TC = TA ◦ TB? The next lemma tells us:

Lemma 2.35 (Matrix of the composition). Let A be an a× n matrix and

B =

 | | |
x1 x2 · · · xb

| | |


an n× b matrix. The a× b matrix

C =

 | | |
Ax1 Ax2 · · · Axb

| | |


is the unique matrix that satisfies TC = TA ◦ TB.

You can read the short proof of this from the lecture notes to better un-
derstand why this holds. This actually gives us the first insight in matrix
multiplication which we are going to define formally as the following:

Definition 2.36 (Matrix multiplication in column notation). Let A be an
a× n matrix and

B =

 | | |
x1 x2 · · · xb

| | |


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an n× b matrix. The a× b matrix

AB :=

 | | |
Ax1 Ax2 · · · Axb

| | |


is the product of A and B.

Now we can go on and define the matrix of the composition TA ◦ TB as the
product of the matrix multiplication: TA ◦ TB = TAB

Observations about matrix multiplication:

1. You can write matrix matrix multiplication AB in different notations:
in column notation as we did above, as a collection of scalar products
as in Observation 2.38 or in brackets notation as in observation 2.39
from the lecture notes.

2. (Lemma 2.40 ) (AB)⊤ = B⊤A⊤ for two matrices with corresponding
dimensions.

3. (Corollary 2.41 ) Let I be the m×m identity matrix. Then IA = A
for all m× n matrices, and AI = A for all n×m matrices.

Last but not least matrix multiplication is distributive and associative. You
can verify this by keeping track of each entry in the multiplication or thinking
of matrices as linear transformations:

Lemma 2.42. Let A,B,C be three matrices. Whenever the respective
sums and products in the following are defined, we have

[(i)]

1. A(B + C) = AB + AC and (A+B)C = AC +BC; (distributivity)

2. (AB)C = A(BC). (associativity)
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1.3 Image and Kernel

Here are the definitions for Image and Kernel of a matrix (from lecture notes).
We are going to examine them closer in a couple of weeks but the keywords
might already come up in external sources, assignments and sometimes in
the lecture.

Definition 2.27 (Kernel and image). Let T : Rn → Rm be a linear
transformation. The set

Ker(T ) := {x ∈ Rn : T (x) = 0 } ⊆ Rn

is the kernel of T . The set

Im(T ) := {T (x) : x ∈ Rn } ⊆ Rm

is the image of T .
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2 Hints

1. In Class.

2. Bonus! No hints.

3. Try to find out what the matrix transformation does to the unit vectors.
One of them is already given. Find T (e2).

4. This is an if and only if proof so you have to prove both directions.
In one direction you prove if T is a linear transformation then vn+1 =
0 Think about what should hold if T is a linear transformation. In
the other direction you should prove if vn+1 = 0 then T is a linear
transformation. Remember how you prove if something is a linear
transformation.

5. You can write the left hand side as a matrix. Do that and choose x, y, z
such that all entries are 0. b) no hints. c) use the previous question.
d) Don’t overthink, this is direct computation. e) Calculate a small
example e.g. 3 × 3. What do you notice about the k − th column of
T k?

6. No hints.

mkilic
♠
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